Lecture 20: Conditional Probability

STAT205 Lecturer: Jim Pitman Scribe: Tye Lidman <tlid@berkeley.edu>

These notes were partially adapted from the notes of Charles C. Fowlkes from previous years. Reference: [1], Section 4.1.

20.1 Review

Recall that for a probability space (Ω, \mathcal{F}, P) , a real r.v. $X \in L^1(\Omega, \mathcal{F}, P)$ (i.e. $\mathbb{E}|X| < \infty$), and sub- σ -field $\mathcal{G} \subset \mathcal{F}$, $\mathbb{E}(X|\mathcal{G})$ is the (a.s.) unique r.v. \hat{X} satisfying:

- 1. $\hat{X} \in \mathcal{G}$; and
- 2. \hat{X} integrates like X over \mathcal{G} -sets; i.e.

$$\mathbb{E}(\hat{X}1_G) = \mathbb{E}(X1_G) \text{ for all } G \in \mathcal{G}.$$
 (20.1)

Note that you never have to check condition (20.1) above for all $G \in \mathcal{G}$ because for any pair of random variables X and Y which are integrable, $\{G \mid \mathbb{E}(X1_G) = \mathbb{E}(Y1_G)\}$ is a λ system (provided $\Omega \in \mathcal{G}$), so you only have to check (20.1) for G in a π -system which generates \mathcal{G} .

20.1 extends immediately to

$$\mathbb{E}(\hat{X}Z) = \mathbb{E}(XZ) \text{ for } Z \in \mathcal{G} \text{ bounded}$$
 (20.2)

by the usual argument of taking linear combinations of indicators and passing to the limit via the dominated convergence theorem, since c|X| is a dominating variable (where c is the bound on |Z|). This gives $\mathbb{E}(XZ) = \mathbb{E}(\mathbb{E}(X|\mathcal{G})Z)$ since Z and $\mathbb{E}(X|\mathcal{G})$ are both \mathcal{G} -measurable, so \hat{X} is a kind of projection of X onto \mathcal{G} -measurable things.

For $X \in L^2(\Omega, \mathcal{F}, P)$, \hat{X} is the *orthogonal projection* of X onto $L^2(\Omega, F, P)$ (up to quibbles about equivalence relations of \mathcal{F} and \mathcal{G}). That is, (20.2) says $\mathbb{E}((X - \hat{X})Z) = 0$ for all $Z \in L^2(\Omega, \mathcal{F}, P)$. This is the definition of an orthogonal projection in a Hilbert space.

Last time we proved the existence of $\mathbb{E}(X|\mathcal{G})$ for \mathcal{G} that are countably generated and $X \in L^2$ by letting $\hat{X} = \lim_{n \to \infty} \mathbb{E}(X|\mathcal{G}_n)$, with $\mathcal{G}_n \uparrow \mathcal{G}$. What about $X \in L^1(\Omega, \mathcal{F}, P)$?

20.2 Properties of Conditional Expectation

We record some basic properties of $\mathbb{E}(\cdot|\mathcal{G})$ as an operator, $X \longmapsto \mathbb{E}(X|\mathcal{G})$:

• $\mathbb{E}(\cdot|\mathcal{G})$ is positive:

$$Y > 0 \Rightarrow \mathbb{E}(Y|\mathcal{G}) > 0$$

• $\mathbb{E}(\cdot|\mathcal{G})$ is linear:

$$\mathbb{E}(aX + bY|\mathcal{G}) = a\mathbb{E}(X|\mathcal{G}) + b\mathbb{E}(Y|\mathcal{G})$$

• $\mathbb{E}(\cdot|\mathcal{G})$ is a projection:

$$\mathbb{E}(\mathbb{E}(X|\mathcal{G})|\mathcal{G}) = \mathbb{E}(X|\mathcal{G})$$

• $\mathbb{E}(\cdot|\mathcal{G})$ is continuous with norm 1 in any of the usual \mathbf{L}^p spaces for $p \geq 1$:

$$\|\mathbb{E}(X|\mathcal{G})\|_p \le \|X\|_p$$

and

$$X_n \xrightarrow{\mathbf{L}^2} X$$
 implies $\mathbb{E}(X_n | \mathcal{G}) \xrightarrow{\mathbf{L}^2} \mathbb{E}(X | \mathcal{G})$

• Conditional expectation has the tower property. If $\mathcal{H} \subset \mathcal{G}$ then:

$$\mathbb{E}(\mathbb{E}(X|\mathcal{G})|\mathcal{H}) = \mathbb{E}(\mathbb{E}(X|\mathcal{H})\mathcal{G}) = \mathbb{E}(X|\mathcal{H})$$

• $\mathbb{E}(\cdot|\mathcal{G})$ commutes with multiplication by \mathcal{G} -measurable variables:

$$\mathbb{E}(XY|\mathcal{G}) = E(X|\mathcal{G})Y$$
 for $\mathbb{E}|XY| < \infty$ and $Y \in \mathcal{G}$

• $\mathbb{E}(\cdot|\mathcal{G})$ respects monotone convergence:

$$0 \le X_n \uparrow X \text{ implies } \mathbb{E}(X_n | \mathcal{G}) \uparrow \mathbb{E}(X | \mathcal{G})$$

• If ϕ is convex and $\mathbb{E}|\phi(X)| < \infty$ then a conditional form of Jensen's inequality holds:

$$\phi(\mathbb{E}(X|\mathcal{G}) \le \mathbb{E}(\phi(X)|\mathcal{G})$$

• As before, $\mathbb{E}(\cdot|\mathcal{G})$ is an orthogonal projection in \mathbf{L}^2 :

$$\mathbb{E}((X - \hat{X})Z) = 0 \text{ for all } Z \in L^2(\Omega, \mathcal{F}, \mathbb{P})$$

• Repeated Conditioning: for $\mathcal{G}_0 \subset \mathcal{G}_1 \subset ..., \mathcal{G}_{\infty} = \sigma(\cup \mathcal{G}_i)$ and $X \in \mathbf{L}^p$ with $p \geq 1$,

$$\mathbb{E}(X|\mathcal{G}_n) \xrightarrow{a.s.} \mathbb{E}(X|\mathcal{G}_\infty)$$

$$\mathbb{E}(X|\mathcal{G}_n) \xrightarrow{\mathbf{L}^p} \mathbb{E}(X|\mathcal{G}_\infty)$$

20.3 Conditioning on Random Variables

Take $\mathcal{G} = \sigma(Y)$ for some random variable Y. Recall that Z is $\sigma(Y)$ is measurable if and only if $Z = \phi(Y)$ for some Borel-measurable function ϕ . We will use the notation $\mathbb{E}(X|\sigma(Y)) = \phi(Y)$. We read this in two ways. $E(X|\sigma(Y))$ is a random variable on (Ω, \mathcal{F}, P) and $E(X|\sigma(Y))$ is some function of Y, as the notation suggests.

Example 20.1 (Baby Bivariate Normal) If X and Y are bivariate normal $(X, Y) \stackrel{d}{=} (X, X \cos \theta + Z \sin \theta)$, with $\cos \theta = \rho$, and X, Z i.i.d. N(0, 1), then:

$$\mathbb{E}X = \mathbb{E}Y = 0$$

$$\mathbb{E}X^2 = \mathbb{E}Y^2 = 1$$

$$\mathbb{E}(XY) = \rho = \text{correlation of } X \text{ and } Y$$

$$\mathbb{E}(Y|X) = \rho X$$

$$\mathbb{E}(X|Y) = \rho Y$$

Notice that if $(X', Y') \stackrel{d}{=} (X, Y)$ then $\mathbb{E}(X|Y) = \phi(Y)$, $\mathbb{E}(X'|Y') = \phi(Y')$.

20.4 Relation to Undergraduate Probability

If (X,Y) has joint density f(x,y) with respect to Lebesgue measure dx dy,

$$\mathbb{P}(X \in dx, Y \in dy) = f(x, y) dx dy.$$

This means $\mathbb{E}(g(X,Y)) = \int_{\mathbb{R}} \int_{\mathbb{R}} g(x,y) f(x,y) dx dy$ for all $g \geq 0$ or g bounded. We let the density of X be $\mathbb{P}(X \in dx) = f_X(x) dx$ and the density of Y be $\mathbb{P}(Y \in dy) = f_Y(y) dy$. Then this means that $f_X(x) = \int f(x,y) dy$ and $f_Y(y) = \int f(x,y) dx$.

Now for all y with $f_Y(y) > 0$, we can define:

$$f_{X|Y=y}(x) = \frac{f(x,y)}{f_Y(y)} \ge 0$$
, with $\int f_{X|Y=y}(x) dx = 1$

This is the "formal" conditional density of X given Y = y. We can relate this to $\mathbb{E}(X|Y) = \phi(Y)$ by defining $\phi(y)$ as

$$\phi(y) = \begin{cases} \int x \frac{f(x,y)}{f_Y(y)} dx & \text{if } f_Y(y) > 0\\ 0 & \text{if } f_Y(y) = 0 \end{cases}.$$

We must check that this is measurable with respect to $\sigma(Y)$: this follows from part of Fubini's theorem. Also, we need to check that $\mathbb{E}(\phi(Y)h(Y)) = \mathbb{E}(Xh(Y))$ for h measurable.

In the same setting, we can let $\mathbb{E}(k(X)|Y) = \phi_k(Y)$. $\phi_k(y)$ is defined by simply replacing x with k(x):

$$\phi_k(y) = \begin{cases} \int k(x) \frac{f(x,y)}{f_Y(y)} dy & \text{if } f_Y(y) > 0 \\ 0 & \text{if } f_Y(y) = 0 \end{cases}.$$

In this setup, the expectation of any k(X) given Y can be obtained by integration with respect to a regular conditional distribution, which is a distribution of X that depends on the value of Y. Here, given Y = y, we have the density $f_{X|Y=y}(x) = f(x,y)/f_Y(y)$.

References

[1] Richard Durrett. *Probability: theory and examples, 3rd edition.* Thomson Brooks/Cole, 2005.