
Lecture 20 : Conditional Probability

STAT205 Lecturer: Jim Pitman Scribe: Tye Lidman <tlid@berkeley.edu>

These notes were partially adapted from the notes of Charles C. Fowlkes from previous
years. Reference: [1], Section 4.1.

20.1 Review

Recall that for a probability space (Ω,F , P ), a real r.v. X ∈ L1(Ω,F , P ) (i.e. E|X| <
∞), and sub-σ-field G ⊂ F , E(X|G) is the (a.s.) unique r.v. X̂ satisfying:

1. X̂ ∈ G; and

2. X̂ integrates like X over G-sets; i.e.

E(X̂1G) = E(X1G) for all G ∈ G. (20.1)

Note that you never have to check condition (20.1) above for all G ∈ G because for
any pair of random variables X and Y which are integrable, {G | E(X1G) = E(Y 1G)}
is a λ system (provided Ω ∈ G), so you only have to check (20.1) for G in a π-system
which generates G.

20.1 extends immediately to

E(X̂Z) = E(XZ) for Z ∈ G bounded (20.2)

by the usual argument of taking linear combinations of indicators and passing to the
limit via the dominated convergence theorem, since c|X| is a dominating variable
(where c is the bound on |Z|). This gives E(XZ) = E(E(X|G)Z) since Z and E(X|G)
are both G-measurable, so X̂ is a kind of projection of X onto G-measurable things.

For X ∈ L2(Ω,F , P ), X̂ is the orthogonal projection of X onto L2(Ω, F, P ) (up to
quibbles about equivalence relations of F and G). That is, (20.2) says E((X−X̂)Z) =
0 for all Z ∈ L2(Ω,F , P ). This is the definition of an orthogonal projection in a
Hilbert space.

Last time we proved the existence of E(X|G) for G that are countably generated and
X ∈ L2 by letting X̂ = lim

n→∞
E(X|Gn), with Gn ↑ G. What about X ∈ L1(Ω,F , P )?
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20.2 Properties of Conditional Expectation

We record some basic properties of E(·|G) as an operator, X 7−→ E(X|G):

• E(·|G) is positive:
Y ≥ 0 ⇒ E(Y |G) ≥ 0

• E(·|G) is linear:
E(aX + bY |G) = aE(X|G) + bE(Y |G)

• E(·|G) is a projection:
E(E(X|G)|G) = E(X|G)

• E(·|G) is continuous with norm 1 in any of the usual Lp spaces for p ≥ 1:

‖E(X|G)‖p ≤ ‖X‖p

and
Xn

L
2

−→ X implies E(Xn|G)
L
2

−→ E(X|G)

• Conditional expectation has the tower property. If H ⊂ G then:

E(E(X|G)|H) = E(E(X|H)G) = E(X|H)

• E(·|G) commutes with multiplication by G-measurable variables:

E(XY |G) = E(X|G)Y for E|XY | < ∞ and Y ∈ G

• E(·|G) respects monotone convergence:

0 ≤ Xn ↑ X implies E(Xn|G) ↑ E(X|G)

• If φ is convex and E|φ(X)| < ∞ then a conditional form of Jensen’s inequality
holds:

φ(E(X|G) ≤ E(φ(X)|G)

• As before, E(·|G) is an orthogonal projection in L2:

E((X − X̂)Z) = 0 for all Z ∈ L2(Ω,F , P)

• Repeated Conditioning : for G0 ⊂ G1 ⊂ . . ., G∞ = σ(∪Gi) and X ∈ Lp with
p ≥ 1,

E(X|Gn)
a.s.

−→ E(X|G∞)

E(X|Gn)
L

p

−→ E(X|G∞)
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20.3 Conditioning on Random Variables

Take G = σ(Y ) for some random variable Y . Recall that Z is σ(Y ) is measurable if
and only if Z = φ(Y ) for some Borel-measurable function φ. We will use the notation
E(X|σ(Y )) = φ(Y ). We read this in two ways. E(X|σ(Y )) is a random variable on
(Ω,F , P ) and E(X|σ(Y )) is some function of Y , as the notation suggests.

Example 20.1 (Baby Bivariate Normal) If X and Y are bivariate normal (X, Y )
d

=
(X, X cos θ + Z sin θ), with cos θ = ρ, and X, Z i.i.d. N(0, 1), then:

EX = EY = 0

EX2 = EY 2 = 1

E(XY ) = ρ = correlation of X and Y

E(Y |X) = ρX

E(X|Y ) = ρY

Notice that if (X ′, Y ′)
d

= (X, Y ) then E(X|Y ) = φ(Y ), E(X ′|Y ′) = φ(Y ′).

20.4 Relation to Undergraduate Probability

If (X, Y ) has joint density f(x, y) with respect to Lebesgue measure dx dy,

P(X ∈ dx, Y ∈ dy) = f(x, y) dx dy.

This means E(g(X, Y )) =
∫

R

∫

R
g(x, y)f(x, y) dx dy for all g ≥ 0 or g bounded. We

let the density of X be P(X ∈ dx) = fX(x) dx and the density of Y be P(Y ∈ dy) =
fY (y) dy. Then this means that fX(x) =

∫

f(x, y) dy and fY (y) =
∫

f(x, y) dx.

Now for all y with fY (y) > 0, we can define:

fX|Y =y(x) =
f(x, y)

fY (y)
≥ 0, with

∫

fX|Y =y(x) dx = 1

This is the “formal” conditional density of X given Y = y. We can relate this to
E(X|Y ) = φ(Y ) by defining φ(y) as

φ(y) =

{

∫

xf(x,y)
fY (y)

dx if fY (y) > 0

0 if fY (y) = 0
.
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We must check that this is measurable with respect to σ(Y ): this follows from part
of Fubini’s theorem. Also, we need to check that E(φ(Y )h(Y )) = E(Xh(Y )) for h
measurable.

In the same setting, we can let E(k(X)|Y ) = φk(Y ). φk(y) is defined by simply
replacing x with k(x):

φk(y) =

{

∫

k(x) f(x,y)
fY (y)

dy if fY (y) > 0

0 if fY (y) = 0
.

In this setup, the expectation of any k(X) given Y can be obtained by integration with
respect to a regular conditional distribution, which is a distribution of X that depends
on the value of Y . Here, given Y = y, we have the density fX|Y =y(x) = f(x, y)/fY (y).
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