Lecture 20 : Conditional Probability

STAT205 Lecturer: Jim Pitman Scribe: Tye Lidman <tlid@berkeley.edu>

These notes were partially adapted from the notes of Charles C. Fowlkes from previous
years. Reference: [1], Section 4.1.

20.1 Review

Recall that for a probability space (Q, F, P), areal r.v. X € L'(Q, F, P) (i.e. E[X]| <
o0), and sub-o-field G C F, E(X|G) is the (a.s.) unique r.v. X satisfying:

1. X € G; and
2. X integrates like X over G-sets; i.e.

E(X1g) = E(X1g) for all G € G. (20.1)

Note that you never have to check condition (20.1) above for all G € G because for
any pair of random variables X and Y which are integrable, {G | E(X1g) = E(Y1g)}
is a A system (provided §2 € G), so you only have to check (20.1) for G in a m-system
which generates G.

20.1 extends immediately to
E(XZ)=E(XZ) for Z € G bounded (20.2)

by the usual argument of taking linear combinations of indicators and passing to the
limit via the dominated convergence theorem, since ¢|X| is a dominating variable
(where ¢ is the bound on |Z|). This gives E(XZ) = E(E(X|G)Z) since Z and E(X|G)

A

are both G-measurable, so X is a kind of projection of X onto G-measurable things.

For X € L*(Q,F,P), X is the orthogonal projection of X onto L?(Q, F,P) (up to
quibbles about equivalence relations of F and G). That is, (20.2) says E((X — X)Z) =
0 for all Z € L*(Q), F,P). This is the definition of an orthogonal projection in a
Hilbert space.

Last time we proved the existence of E(X|G) for G that are countably generated and
X € L? by letting X = lim E(X|G,), with G, T G. What about X € L'(Q, F, P)?

20-1
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20.2 Properties of Conditional Expectation

We record some basic properties of E(-|G) as an operator, X — E(X|G):
e [E(-|G) is positive:
Y > 0= EY|G) >0

o [E(-|G) is linear:
E(aX +b0Y|G) = aE(X|G) + bE(Y'|G)

e E(:|G) is a projection:
E(E(X]9)|G) = E(X|G)

e [E(-|G) is continuous with norm 1 in any of the usual L? spaces for p > 1:
X9 < 11X

and
X, 5 X implies E(X,,|G) -5 E(X|G)

e Conditional expectation has the tower property. If H C G then:
E(E(X[G)|H) = E(E(X[H)G) = E(X|H)

e E(-|G) commutes with multiplication by G-measurable variables:

E(XY|G) = E(X|G)Y for E[XY| < oo and Y € G

e [E(-|G) respects monotone convergence:
0< X, T X implies E(X,,|g) 1 E(X|9)
o If ¢ is convex and E|¢p(X)| < oo then a conditional form of Jensen’s inequality

holds:
O(E(X]G) < E(¢(X)|G)

e As before, E(+|G) is an orthogonal projection in L?:
E(X — X)Z) =0 for all Z € L*(Q, F,P)
e Repeated Conditioning: for Gy C G; C ..., G = o(UG;) and X € LP with

p=>1,
E(X]Gn) — E(X|Gx)

E(X|Gn) ~ E(X|Gux)
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20.3 Conditioning on Random Variables

Take G = o(Y) for some random variable Y. Recall that Z is o(Y) is measurable if
and only if Z = ¢(Y") for some Borel-measurable function ¢. We will use the notation
E(X|o(Y)) = ¢(Y). We read this in two ways. E(X|o(Y)) is a random variable on
(Q,F, P) and E(X|o(Y)) is some function of Y, as the notation suggests.

Example 20.1 (Baby Bivariate Normal) If X and Y are bivariate normal (X,Y) =
(X, X cos@ + Zsin ), with cos@ = p, and X, Z i.i.d. N(0,1), then:
EX =EY =0
EX?=EY?=1
E(XY) = p = correlation of X and Y
E(Y|X) = pX
E(X|Y) = pY

Notice that if (X’,Y”") £ (X,Y) then E(X|Y) = ¢(Y), E(X'|Y") = ¢(Y").

20.4 Relation to Undergraduate Probability

If (X,Y) has joint density f(x,y) with respect to Lebesgue measure dx dy,
P(X €dx,Y € dy) = f(x,y) dx dy.

This means E(g(X,Y)) = [i Jg 9(x,y)f(x,y)dxdy for all g > 0 or g bounded. We
let the density of X be P(X € dx) = fx(z)dx and the density of Y be P(Y € dy) =

fy(y) dy. Then this means that fy(z) = [ f(x,y)dy and fy(y) = [ f(z,y) dz.
Now for all y with fy(y) > 0, we can define:

f(x,y)
fr(y)

fX|Y=y(x) = > 0, with /fx|y:y(l') dr =1

This is the “formal” conditional density of X given Y = y. We can relate this to
E(X|Y) = ¢(Y) by defining ¢(y) as

B fxfif’y)dx if fy(y) >0
cb(y)—{o fr @) £ () =0
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We must check that this is measurable with respect to o(Y): this follows from part
of Fubini’s theorem. Also, we need to check that E(p(Y)h(Y)) = E(XA(Y)) for h
measurable.

In the same setting, we can let E(k(X)|Y) = ¢r(Y). ¢ér(y) is defined by simply
replacing x with k(z):

_ ) SR@EERdy i fy(y) >0
Pr(y) { 3 £ () =0

In this setup, the expectation of any k(X)) given Y can be obtained by integration with

respect to a regular conditional distribution, which is a distribution of X that depends
on the value of Y. Here, given Y = y, we have the density fxyy—,(z) = f(z,y)/fy(y).
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